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Thin-airfoil theory applied to hydrofoils with a 
single finite cavity and arbitrary free-streamline 

detachment 

By A. G. FABULA 
U.S. Naval Ordnance Test Station, Pmadena, California 

(Received 9 June 1961) 

Thin-airfoil theory is applied to steady, plane potential flow about vented or 
cavitating hydrofoils of arbitrary profile when there are two free-streamlines 
detaching from the foil and bounding the single cavity that extends downstream 
of the trailing edge. Cavity-termination models employed are the closed, the 
partly closed and the open models for which the thickness of the implied ‘wake ’ 
following the cavity ranges from zero to maximum for the open model. The 
general solution for given wetted-surface profile, cavity length and particular 
cavity termination is constructed by superposition of the profile’s cusp-closure 
solution (angle of attack a+) plus the particular flat-plate solution to give the 
desired angle of attack a. Four related integrals involving the wetted-surface 
contour slope distribution lead to drag, lift, cavity pressure and a+ vs cavity 
length. A comparison of theoretical and experimental lift and drag for a cavitating 
hydrofoil shows good agreement until the theoretical cavity closure nears the 
trailing edge. 

1. Introduction 
The problem considered is steady, plane, irrotational and incompressible flow 

about a thin hydrofoil, at small angle of attack a, from which free streamlines 
detach unsymmetrically, as in figure 1. The flow is otherwise unbounded. The 

FIGURE 1. Hydrofoil with full side cavity due t o  ventilation or cavitation. 

known free-streamline detachment points are at x = e on the upper side, with 
0 < e < 1, and at x = 1, the trailing edge, on the lower. Unit chord length is 
assumed throughout. Since gravity is ignored, specification of the ‘upper’ side 
as having the more forward detachment is nominal. I is the length from leading 
edge to cavity termination, where the free streamlines lose their special character. 
It is assumed that the cavity is fully developed or full, so that I > 1. 

The application of major interest is the forced-vented hydrofoil on which gas ex- 
haust, from a spanwise slit or row of closely spaced smalI holes, forces detachment 
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at the exhaust line. Experiments have shown the stability of such cavity flows 
and the feasibility of thus producing a significant lift-force change for control 
purposes by simple gas valving, e.g. on a torpedo (Lang, Daybell & Smith 1959). 
The same flow geometry can occur with naturally vented surface-piercing hydro- 
foils, with hydrofoils designed for only vented operation, as suggested by the 
dashed base contour in figure 1 (Lang 1959) and with cavitating hydrofoils. The 
same free-streamline model for I = 00 has been applied to steady and unsteady 
airfoil flows with separated boundary layer by Woods (Thwaites 1960). Since the 
pressure distribution is not obtained herein, the application to naturally vented 
and cavitating hydrofoils is possible only when the detachment points are 
known. 

FIGURE 2. Linearized-theory boundary-value problem in physical plane. 

By covering the range 0 < e < 1, 1 < I 6 00, this paper extends previous work 
for 1 = 00 with arbitrary e and for arbitrary 1 with e = 0. Trailing-edge venting, 
e = 1, is not included because of a reason evident later and because, for that case, 
the hydrofoil thickness and camber problems are separable, so that drag, lift 
and pitching moment are much easier to obtain (Fabula 1960). Also not con- 
sidered is the so-called partial cavity case with e < I < 1, which is usually of less 
interest. The case of leading-edge detachment, e = 0, is naturally included in 
the present work, but it is not emphasized since that solution is well known in 
connexion with hydrofoils having a sharp leading edge. 

Since most hydrofoils of interest have low thickness ratios a thinairfoil approxi- 
mation will be used here. This offers considerable simplification in handling the 
problem of cavity termination as well. In  the ordinary linearization with respect 
to the free-stream speed, U,, the total complex velocity is U +iV = V,(l +W), 
where w = u. - i v  is the desired analytic function of the physical-plane complex 
variable, x = x + iy. The tangency condition for the flow on the upper ( + ) and 
lower ( - ) wetted surfaces is 

V* = dh,/dx, (1) 

where h,(x) is the wetted-surface contour. 
Cavity pressure is specified by the cavity number 

K = 2(P,-PcwJ2, .  

cp = 2(P-Pm)IPU2, 

Since the linearized Bernoulli equation for the pressure coefficient 

is c, = -2u, (3) 
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the value of u on the cavity specifies K as 

K = 2uC,. (4) 

To complete the boundary-value problem, assumptions must be made about 
free-streamline detachment and cavity termination. The condition of smooth 
separation is obtained by exluding possible solutions corresponding to certain 
singularities at the detachment points. Out of a great variety of possible cavity- 
termination methods, only the closure-singularity method (Tulin 1953) is used. 
Thus the trailing end of the closed cavity is like the trailing edge of an elliptical- 
profile airfoil in thin-airfoil theory (Biot 1942). In  a minor generalization, the 

hlodel 

Closed v t ,= 0 

t ,  = t w o  
Open w------ 

FIGURE 3. Types of cavity termination, according to closure singularity strength, 
when no singularities are allowed in the wake. 

condition of complete cavity closure is relaxed and the 'wake' thickness, t,, 
implied by integration of v(x, 0 ) over the slit, is allowed to range from zero to 
two, as in figure 3. Zero wake thickness corresponds to the closed-cavity model, 
with maximum allowable closure, and maximum wake thickness corresponds 
to the open-cavity model with zero closure. The point-drag forces at cavity 
termination, seen in figure 3, are explained later. Of course such crude models 
of real-fluid wakes are not expected to be accurate, but are merely considered 
in order to obtain some rough indication of what effects might be expected if 
experimental wake thickness is found to be appreciable, according to a criterion 
discussed later. 

2. Boundary-value problem in the circle plane 
All the single-cavity boundary-value problems discussed here are similar since 

there is a single portion of the slit periphery on which u is specified. Furthermore, 
because u. is constant in that portion, this simple type of mixed boundary-value 
problem can be converted into the direct problem of thin-aerofoil theory, whereby 
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in the ' circle plane ', [ (z) ,  v is specified on the unit circle, with w less the closure 
function regular outside the unit circle. Thus for 0 < e < 1, 1 < I < co, by use of 

[ =  C1+iCz = C+(p-l)* ( 5 )  

the z-plane outside the slit (0 ,O)  to ( 1 , O )  is mapped onto the upper half of the 
[-plane external to the unit circle (figure 4). The wetted-parts of the slit sides 
map onto the semicircle, 5 = eie, 0 < 8 < 7r7 with the point-to-point corre- 

spondence xt/(Z-x)* = +b-l(cos8-a), b = ( l + a ) ( I - l ) * .  

61 
FIGURE 4. Boundary-value problem in upper half of circle plane. 

The exhaust point is at 8 = 0, the leading edge at 8 = 8' = cos-l a and the trailing 
edge at 8 = 7r. The upper and lower free-streamlines map onto [ = IQI > 1 
with cavity termination at cl = + co for the upper free-streamline and at  - 00 

for the lower. The wake maps onto a curve reaching from [ = 2a + i 00 for x = I 
to 

cm = a + ib + {(a + ib)2- I}'. 
= crn for x = co, with 

Thus the boundary-value problem for w([) is 

v(eiO) = dh,/dx = H(8)  (0 < 8 < n), (6) 

w(5m) = 0, (7 )  

= u, = *K, IC1\ > 1. (8) 

Analytic continuation into the lower-half [-plane shows that 

w(Y) - u c  = - P ( C )  - %I7 
and thus the mixed boundary-value problem for w(z) has been converted into 
an ordinary type for w(6) with 

v(eio) = H(8) ,  - 7r < 0 < 7r, H (  - 8)  = H(8).  (6') 

The unknown constant u, in (8) will be determined by (7). 
The closure singularity function in the [-plane is iC([- [-I), which, for real C ,  

leaves unaffected the unit-circle and real-axis boundary conditions. Thus (5) 
shows that the resultant behaviour of w(z) near the cavity termination point is 

z --f ( Z , O ) ,  w(z) = -c~(z-z)-*+o(l), (9) 

with C, = 218 bC. 
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Therefore, on the free-streamlines approaching the cavity termination, v* + T 00 

if C is positive, and v1 + & 00 if C is negative. Proper closing action requires 
that C be positive, either because the wake otherwise is thicker than the cavity, 
which is considered inappropriate, or because the implied free-streamlines 
otherwise cross somewhere before cavity termination, as discussed later. 

The above conversion from a mixed to the ordinary type of boundary-value 
problem would not apply for the case of two cavities, as, for example, with a short 
vapour cavity near the leading edge, ahead of the main cavity. In  such cases, 
a simple mapping of the sides of the z-plane singularity slit onto the entire real 
axis gives the type of problem considered by Cheng & Rott (1954), with u and v 
prescribed on alternate portions of the real axis. 

The mapping used here for the case of a single cavity is convenient because of 
the reduction to the well-know2 boundary-value problem for the unit circle, but 
it does not apply directly for e < I < 1. On the other hand, a mapping applicable 
for all I is that used by Woods (1953) in treating the separated boundary-layer 
problem for e < I < 1 or I = 00, whereby the z-plane outside the singularity slit 
is mapped onto an infinite strip with the wetted surface on one side and the free- 
streamline on the other. 

3. Drag, lift and moment 
An advantage of the cavity-termination models selected is that pressure dis- 

tributions are not needed to obtain drag, lift and pitching moment. Because of 
the properties of analytic functions, the required pressure-distribution integra- 
tions reduce to the calculation of certain key solution parameters. Only the 
resultant relations are given here. Considering first CL and C,,, since the pressures 
along y = 0 ~f: are equal everywhere off the foil, the hydrofoil lift and moment are 
the same as on the pseudo-hydrofoil represented by the hydrofoil plus cavity 
plus wake. For unit chord, with the moment about the leading edge measured 
clockwise, we have 

where, for 1 < 00, the solution has the form 

a, + ib, a2 + ib2 z + w ,  w(z) = -+- + .... 
Z 2 2  

In  contrast, the form drag does involve the cavity in one way or another. For 
the open model, the pseudo-hydrofoil is seen to have zero-form drag, and simple 
considerations show that the hydrofoil’s drag coefficient for unit chord is 

CD = two K = 27ralo K ,  (12) 
therefore 

where two is the open-model wake thickness. For the closed model, the net zero 
drag of the closed pseudo-hydrofoil shows that the hydrofoil drag is balanced by 
the negative point drag at the cavity termination, as in figure 3, so that (Wu 1957) 

CD = 2rcg. (13) 

Possible leading-edge point-drag or suction forces are included in these drag 
formulas (Jones & Cohen 1960). The relations for CL, C, and CD for the partly 
closed models are given later. 
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As will be shown, for every 1 of interest and for e 4 1, there exists an angle of 
attack a+ for which tw must be zero, so that the cavity has cusp closure, making 
CD = 0. For a = a+, the open, partly closed and closed models for each I are 
identical, and for a < a+, each implies improper doubly covered flow, since the 
implied free-streamlines must cross, as shown in figure 5 for the closed model. 
For each I ,  the a+ and associated u$ , C,C and C;f; are key parameters common to 
the three models. 

a =  a +  Y 

FIGURE 5. Cavity configurations according to angle of attack for closed-cavity model. 

For the open-model solution, it is convenient to separate wo(z) into the cusp- 
closure solution w+(z) and (a - a+) P(x), where P(z) is the w(x) for the open-model, 
flat-plate case for unit angle of attack. From (lo), ( 1 1 )  and ( 1 2 ) ,  one has 

i(C,+/4n) a$ --i(C&/4n) 
+- + ... 

22 
z -f 00, W+(X) = 

2 

so that the open-model relations for given 1 are 

+K = w,' + (01 -a+) uCp, two = (a - a+) t,, 

CD = twoK, CL = C,+ + (a-a+)CLp, C, = C&+ (a-a+)CJfp. 

For the closed-model solution, w&), the similar resolution is into w+(z) and 
(a -a+) &(z), where & ( x )  is the w(x) for the closed-model, flat-plate case for unit 
angle of attack. With the expansions 

and, from (9) and (13), 

-f (l7 O)7 &(z )  = -{CD,/2n(z-l))t+0(1)7 (15) 

the closed-model relations for given I are 

(19) 
ig = u$ + (a-a+)u,,, c, = (a-a+)2CDQ, 

c, = c,+ + (a - a+) c,,, c, = C& + (a - .+) C1,[,. 

A partly-closed model solution exists, for each given profile, cavity length and 
angle of attack (a > a+), for each ratio of wake thickness to open-model wake 
thickness. The solution for each T = tw/two in the allowable range 0 < T < 1 is 

20 = w++(a:-a+)[TP+(l-T)Q] = Two+( l -T)w, .  (20) 
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Clearly one has K = TKO + (1 - T )  K ,  plus similar forms for C, and C,. The drag 
integral gives 

and the relations between the open- and closed-model flat-plate solutions reduce 
this to 

Thus for the partly closed model, C,, CL, C,, and K for each 1 and T are obtained 
from the open and the dosed model values by the common relation 

CD = KT(a - a+) twp f ( 1  - T)2  (a - a+)’ CD@, 

CD = TCDo + ( 1  - T )  CDcl. 

( 1T = T( ) o + ( l - T ) (  Id- (21 1 

4. Open-model, smooth-entry solution 
While the cusp-closure solution is a natural reference for both the open and 

closed models, a particular open-model solution ws, giving ‘smooth entry ’, 
i.e. no leading-edge suction, is convenient in obtaining the cusp-closure solution. 
The function wS(C) is regular outside the unit circle and satisfies 

where as is the open-model, smooth-entry angle of attack and ues the corre- 
sponding uc. Having w,(f;), w+({) is readily obtained from 

w+(C) = w,(C) + (a+ - a s )  W), 
where a’ is to be determined by the condition t$ = 0. Thus with 

then, except for e = 1 (for which twp = 0) ,  a+-as exists, given by 

a+-a,=-a lJ a l p  = --tW&/tWP> (26) 

and the cusp-closure parameters are seen to be 

~ 2 -  = ucS - (tw$/twp) uep’ C2 = Czs - (tws/tmp) CLp, QiL = c-Jfs - (tm8/twp) ‘51,. 
(27 ) 

Because the smooth-entry solution cannot have leading-edge suction, the only 
singularities in ws(eiO) are those due to discontinuities or singularities in H(8).  
The function ws(<) is obtained as follows. Let 

W: = i[ws(<) - (Ue, + ia.9113 
so that wi is the analytic function regular outside the unit circle with its real part 
thereon equal to H(8)  = H (  -8) and with its imaginary part zero on C = Cl, 
Icl:l( > 1. Thus wL(Q), where Q = 115, is seen to satisfy the boundary conditions 
of Boggio’s formula, so that (Bateman 1944) 
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Therefore 

w&)-(u(,s+ia.s) = 

and, from (23), 

The equivalent power series is (Kellogg 1929) 
m 

0 
w&) = ucs + ias - i c c, p ,  

with co = i J i H ( B ) d B ,  c, = H(8)cosnOdO (n =I= 0) 

m 
I 

and ilc,.s+ia,s = iCcnf;;7b. 
0 

The major complication of finite cavity length is simply that zu,(y) and its 
first two derivatives must be evaluated a t  + 03, so that the appropriate power 
series no longer reduce to simple polynomials. For large i.e. large I ,  the power 
series can be tipproximated by their first few terms, as was done for e = 0 by 
Wu (1956). However, short cavity lengths are commonly of interest for forced 
venting when a is near a+, because then drag is low and hence the cavity length 
shortens rapidly as K increases. Thus the integral solution is emphasized here. 

The required parameters of w,(Y) are obtained as follows. Letting 2 = l /z,  then 

Because C,, is appreciably more laborious to calculate, it is not considered further 
here. The mapping C(z) shows that, using Q = ReiA and Q - a - ib = Neiv, 

The key relations are found from (28) and (30) to be 

ues + ia, =‘f s,” [RG + &(A2 - 1) PI HdO, (33) 

- [2A2 sin 2h + i(A4 - I)] 
(A4 + 1 - 211 ‘00s Zh) 

1 1 where p =  _. ~ 

A’+ 1 - 2R cos ( A  + 0) A’+ 1 - ~ A C O S  (A- 6 )  ’ 

sin (A - 8) 
A2 + 1 - 2A cos (A-  8)’ +- (J = - sin@+@ 

Rz+ 1 - 213. cos (A+ 8) 
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These relations follow from the identity 

Because of the complexity of (33) and (34), it  is important to make maximum use 
of basic solutions constructed from unit-circle singularities. The flat-plate 
solutions are of this type and, as seen earlier, are also necessary in the con- 
sideration of angle of attack. 

5. Vented flat plate 
The open-model solution P(C;) for the vented flat plate is obtained by placing 

the leading-edge singularities of fully wetted flow (Biot 1942) at the leading-edge 
point, e+iv, and its image, e-i@, so that for unit angle of attack 

That the unit-circle and real-axis boundary conditions are satisfied is easily seen. 
The constants u,, and pp are determined by P(cm) = 0 ,  giving 

From (35)  and (32) ,  one obtains 

(twp/27r) + i(CLp/47r) = (,8p1/2biV) ([ - ( 1  - a2) cos v + ab sin v] 
+ i[ab cos Y + (1 - a2) sin Y]). (37) 

Tables of uCp, twp and CLp for various 1 and e values (CO < 1 < 1 and 0 < e < 1) 
have been calculated to allow ready treatment of general a and K with the open 
model. The solid curves in figure 6 show C,la2 = 2twpuCp and CLla = CAP 2's 
KI2a = ucp for constant e,  and the dashed curves are constant-1 contours. 

To obtain the flat-plate closed-cavity solution Q(c), one adds the closure 
singularity function so that, with C = C'PQ, 

The unit-circle and real-axis boundary conditions are unaffected. The zero con- 
dition a t  crn yields 

Since 

then, parallel to the open-model development; one obtains 
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C' is determined from (40) using the condition, already implied there, that 
twQ = 0. CLQ follows directly. CDQ is obtained from (13), using C, = 21*bCt/3,. 
Using these relations, tables of ucQ, CDQ and CLQ ws 1 and e have also been cal- 
culated. 

I I I I I I T  

K/2a 

for open-cavity model and various exhaust locations. 
FIGURE 6. Drag, lift, and cavity length ws cavity number for vented flat plate 

Figure 7 gives CDja2 = CDQ and CLfa = CLQ wg Kj2a = ucB for constant e and 
the corresponding closed-model cavity length ws K/2a and e. The major difference 
seen in figures 6 and 7 is the shorter open-model cavity lengths for a given K.  
It can be shown that the cavity-length ratio lo/ld + as K -+ 0, which is the same 
as for trailing edge venting (Fabula 1960). While K for the open model and a 
given a is finite for L = 1 (K  = K I ) ,  the combination of the partly-closed model 
family and the closed-model limit, i.e. 0 < T < 1, has K -+ 00 for 1 -+ 1 due to 
the closure singularity. Thus for each K and a there is a continuous range of 
possible 1 values, namely lo < 1 6 ld if K < K,,  and 1 < 1 < l,, if K > K,. It is 
readily seen that such relations also hold for an arbitrary profile in terms of K - K+ 
and a-a+. For purposes of comparison with experiment, it is interesting to 
note that the family of cavity termination models employed typically implies 
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noticeably shorter cavity length if and when wake thickness for unit chord is 
no longer negligible in comparison with two = C,,/K w C,/K, where C, and K 
are experimental values. 

- - _ _ _ -  < 
L 

L 
x - _ - _ - -  

* [-I 

K/2a 

plate for closed-cavity model and various exhaust locations. 
FIGURE 7. Drag, lift, and cavity length vs cavity number for vented flat 

6. Other basic profiles 
Solutions for other simple profiles and profile components can be constructed 

from singularities on the unit circle. Examples are cases of piecewise-uniform 
contour slope corresponding to polygonal profiles, such as the plain flap vented 
at the hinge and the vented split flap. 

With the typical case of a parabolic leading edge with local thickness dis- 
tribution proportional to xi, the resultant singularity in H for 6’ + 6” is removed 
by use of the open-model, point-drag solution for finite cavity length, as shown 
in figure 8 (Pabula 1960). The corresponding profile expression is 

K, = CJ{X*(Z - x)*/Z + sin-1 (x/Z)j}, (41) 
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and thus ii,, the contribution to u, for a given I by the point-drag solution, is 
determined by the leading-edge radius. The contributions to t ,  and C, are clearly 

fw = nu",l, b, = 0. (42) 

7. A comparison with experiment 
In order to make a fist fairly complete experimental test of theory, it is 

desirable to test a vented or cavitating hydrofoil with a simple form over a wide 
range of cavity numbers. Such a case is the cavitating profile of figure 9 for 

3592 R 0168 

FIGURE 9. Test hydrofoil configuration. 

FIGURE 10. Open-model, smooth-entry solution parameters for test hydrofoil 
(with e = 0.4 or 0.5 instead of 0.488). 

which the cavity configuration shown occurred in a narrow range of angIe of 
attack (obviously near the smooth-entry angle), and for which C, and C, data 
are available for a = 7" and 8' with K between about 0.2 and 1.0 (Parkin 1956). 
The wetted-surface contour slope distribution for the test hydrofoil is con- 
veniently approximated as 

0 < 6 < 6'; H ( 6 )  M y+6, H ( 8 )  z y -2yq  6' < 8 < n; (y = 8", 6 = 11'). 
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The results of planimeter integration to obtain the open-model, smooth-entry 
parameters for e = 0.4 and 0.5 and 1 = co, 4, 2, 1.5, 1.25 and 1.1 are given in 
figure 10. 

It is simple to go from the open-model, smooth-entry parameters to the cusp- 
closure parameters with the tables of the open-model flat-plate parameters. 
Next, the open- and closed-model C,, CL and K us 1 are easily obtained via the 

I I I I I 
02 04 06 0.8 1.0 

K 

I I I I 16 

0.2 04 0.6 0.8 10 
I< 

FIGURE 11. Cornparkon of theoretical and experimental lift and drag v8 

cavity number for the side-cavitated hydrofoil. 

respective tables. Figure 11 gives the experimental data and the final theoretical 
curves of C,, C, and 1 us K for a = 7" and 8' and e = 0.49, obtained by inter- 
polation from the results for e = 0.4 and 0.5. Solid and dashed curves give closed- 
and open-model results, respectively. While the open model reaches 1 = 1 for 
finite K ,  the closed model has K -+ co for 1 -+ 1. The results for the partly closed 
model are easily constructed according to the simple relations given earlier. In 
accord with other comparisons of theory and vapour-cavity experiments, the 
closed model seems appropriate, but partly closed models for small T would be 
equally appropriate. 

The force comparison is good up to K x 0.65, which is as high a value as that 
for which one might hope linearized theory to be useful. The experimental C,- 
behaviour for K > 0.65, for which I,, < 1.25, suggests that the thick trailing edge 
is being hit by the typical re-entrant jet which is expected to be present to some 
extent. Unfortunately water-tunnel photographs to check this and to compare 
cavity lengths are not available. 
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This work was done as part of an investigation of forced-vented hydrofoils 
for the Bureau of Naval Weapons, U.S. Navy. Helpful suggestions by Prof. 
T. Yao-tsu Wu are gratefully acknowledged. The flat-plate parameter tables 
and a comparison of theory and experiment for two hydrofoils with forced 
ventilation will be given in a future NAVWEPS report. 
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